
Corpus-Based Identification and Refinement of Semantic Classes
A. Nazarenko, Ph.D.*, P. Zweigenbaum, Ph.D.t, J. Bouaud, Ph.D.t, B. Habert, Ph.D.t

* Laboratoire d'Informatique de Paris-Nord- Universit6 Paris 13
t DIAM- Service d'Informatique Medicale/AP-HP & Dept. Biomathematiques U. Paris 6
t Equipe Linguistique et Informatique - Ecole Normale Superieure de Fontenay St Cloud

Medical Language Processing (MLP), especially in
specific domains, requires fine-grained semantic lex-
ica. We examine whether robust natural language
processing tools used on a representative corpus of
a domain help in building and refining a semantic cat-
egorization. We test this hypothesis with ZELLIG, a
corpus analysis tool. The first clusters we obtain are
consistent with a model of the domain, asfound in the
SNOMED nomenclature. They correspond to coarse-
grainedsemantic categories, but isolate as well lexical
idiosyncrasies belonging to the clinical sub-language.
Moreover, they help categorize additional words.

INTRODUCTION

Medical vocabularies are a fundamental resource for
medical information processing.' They are faced with
a difficult problem of coverage,2 both in width, with
different disciplines and new terms, and in depth, to
produce more precise descriptions with modifiers and
context. A promising way to extend vocabulary cov-
erage is to examine medical corpora, such as patient
narratives, with the help of robust natural language
processing tools.3 This can help propose new terms or
modifiers for inclusion in existing vocabularies. An is-
sue then arises ofcategorizing these new items. We aim
to assess the relevance of advanced corpus linguistic
tools to identify and structure semantic categories.

ZELLIG4 iS such a tool. It has been designed to auto-
mate the discovery of semantic classes in the spirit of
Harris' work.5 Harris claims it is possible, with a dis-
tributional analysis of elementary contexts, to isolate
the concepts and the relationships of the sub-language
of a given domain. We ran an experiment with ZELLIG
on the corTus gathered for the European MLP project
MENELAS in the domain of coronary diseases.

Much research has focused on the automatic construc-
tion of semantic classes from corpora. General lexi-
cal databases like WordNet7 or Roget's thesaurus do
not describe the technical and specialized word uses,
and hand-crafting specialized terminologies and the-
sauri corresponds to long-run tasks. The main ap-
proaches to build specialized semantic classes consist
either in specializing, i.e., contextualizing, general se-
mantic relations,8 or in acquiring specific semantic re-
lations from the distributions of words.9"10

The present work belongs to the second approach.

Our work aims at extracting not only similarity
relationships9 between words or even semantic axes I

but also to group words into classes refering to coherent
semantic categories. In that respect, our objective is
related to that of Bensch and Savitch. " However, they
rely on an automatic classification algorithm whereas
we consider that interpretation is central in the cat-
egorization process. We present a corpus exploration
method to help that interpretation process. This method
relies both on extracting semantic information from the
corpus data and projecting semantic knowledge in a
manner close to Basili et al.12

We first present the methodology for grouping words
relying on normalized syntactic contexts. We show
how these clusters allow us to obtain a coarse-grained
categorization. We assess the relevance of this first
result by comparing it with the SNOMED international
nomenclature.'3 The various ZELLIG labelled graphs
help in structuring and refining the first categorization.
Last, we discuss the interaction between corpus analy-
sis and domain knowledge in order to build or modify
semantic lexica.

A LINGUISTIC METHODOLOGY FOR
ONTOLOGICAL CLASS DISCOVERY

Grefenstette'0 distinguishes three types of semantic
affinities between words and three steps in discovering
semantic categories: "First-order techniques exam-
ine the local context ofa word attempting to discover
what can co-occur with that word within that context.
Second-ordertechniques derive a contextfor each term
and compare these contexts to discover similar words
or terms. Third-order techniques compare lists ofsim-
ilar words or terms and group them along semantic
axes ". Our method follows this three-step process to
discover how words can be grouped together within a
given domain according to the contexts they share.

ZELLIG uses normalized syntactic noun phrases (NPs)
as local contexts for the first-order step. It uses parse
trees retrieved by two NP extractors: AlethIPGN (de-
veloped within the European Eureka GRAAL project)
and Lexter. 14 NPs are generally assumed to express the
main notions ofa domain, and they do cover a large part
of the corpus (between 27 and 38 %, see table 1). ZEL-
LIG automatically reduces these numerous and com-
plex NPs to elementary dependency trees, which more
readily exhibit the fundamental binary relations be-
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tween content words. For instance, from the parse tree
for "stenose serr6e du tronc commun gauche" (tight
stenosis of left main stem), ZELLIG yields the set of
elementary trees of figure 1.
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LIG. The words constitute the nodes. A link cor-
responds to a certain number of shared contexts ac-
cording to a chosen threshold (5 or 10 in the exper-
iment). Edges are labelled with the shared contexts.
ZELLIG also computes the strongly connected compo-
nents (CCs: the sub-graphs in which there is a path
between every pair of distinct nodes) and the k-cliques
(KCs: the sub-graphs in which there is an edge be-
tween each node and every other node of the graph).
These are the most relevant parts of the graph on topo-
logical grounds. Figure 2 shows such a CC. On

Table 1: Corpus coverage (content words).
Total corpus (all words, unlemmatized)

# forms 61917
occurrences_ 84839
NP sub-corpus (content words only, lemmatized)

AlethIPGN Lexter Union
. lemmas 3163 3032 3683
occ. 23727 23124 32652

Connected Components
threshold 5 5 10 5 10
#CC 5 10 8 7 13 17
$ lemmas 250 77 147 33 261 79
% NP lem. 7.9 2.4 4.8 1.0 7.0 2.1
occ. 12273 6485 9454 4279 2375 6746
%NPocc. 51 27 40 18 37 20

Figure 1: Parse tree and elementary dependencies.
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Figure 2: Aconnectedcomponent(ccA10-7).

Second-order affinities show which words share the
same environments. For instance, the following words
can replace tronc in tree b: allure, artere (10 occur-
rences), branche (3 o.), carotide, debut, diagonale (3
o.), droite (4 o.)... That is, they can appear in the same
environment: aN PN tree, whose first noun is stenose.

As a third-order technique aiming at deriving sub-
groupings of similarity, a graph is computed by ZEL-

the MENELAS corpus, ZELLIG produced 30 CCs (13
at threshold 5 and 17 at threshold 10) and 92 KCs
(threshold = 10) (see table 1).

CLUSTERING

Linguistic clusterng
The various KCs and CCs that ZELLIG produces were
found to belong to two sharply different kinds. Most
of them group between two and six lexical entries
(e.g., ccA10-7, figure 2). Within such limited sets,
the words belong to the same global semantic axis.
As such, they help give a semantic tag to the whole
set or to some of its nodes according to the seman-
tic label of the others. They are organized by syn-
onymy, antonymy or scalar relationships. These sets
also help discover idiosyncratic similarities or oppo-
sitions, which are important to build lexically tuned
MLP systems, as clinicians happen to give new mean-
ings to ordinary words. For instance, ccL5-2 gathers
{mauvais bon beau} (literally, {bad good fine}), which
is rather surprising, as there is a discrepancy between
the first two adjectives and the last one: the evaluation
criteria differ. However, as the shared contexts prove
it, in medical records, beau is used as a synonym of
bon (literally, good, meaning fine). More precisely, it
qualifies (parts of) organs (e.g., artery branch) whose
overall state is satisfactory. As is obvious in this ex-
ample, edge labels permit to check immediately the
possible semantic categorizations for the nodes of the
graphs, or to isolate the odd ones (such as limite (limit)
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in figure 2).

ccL5-2 belongs to the second kind of CCs, which
have many more nodes (34, 50, 99, 233). It is shown
on figure 3 (without edge labels; nodes have been ad-
ditionally tagged, as explained later). Here, the obser-
vation of graph topology permits to isolate consistent
sub-areas, as the set {lateral apical antereur posterieur
inferieur}, which by the way constitutes a KC. As for
the limited KCs or CCs discussed above, as soon as
these groups have been pointed out, their immediate
neighbors can be assimilated to the same semantic cat-
egory: this heuristic can be applied to {antero-apical
postero-inferieurantero-lateral} which use components
of the category core. Some words act as mediators be-
tween groups. That is the case for gauche (left) which
is articulated with the first semantic category as well as
with a second one {droite coronaire circonflexe arterel
coronarien}. Such a situation can give rise to the hy-
pothesis ofshades ofmeaning for a given word, or even
of the existence of homonyms. The pair {coronaire
coronarien} presents such shades of meaning: the for-
mer is more descriptive, the latter more evaluative, as
it is associated to adjectives such as {severe important
significatif}, which constitute a third semantic category.

The visual map of relationships between words pro-
vided by ZELLIG enables, at first glance, to iden-
tify coarse-grained semantic categories and to isolate
lexical idiosyncrasies belonging to the clinical sub-
language. However, the conceptual validity of these
linguistic groupings must be assessed.

Cluster validation
We therefore decided to confront them to an ex-
isting categorization: the SNOMED International
nomenclature,'3 which both has very good clinical
coverage2 and is partially translated into French. We
started from the 11 high-level SNOMED categories (T
M F L C J A S D P G). We first categorized 937 out
of the 994 lemmas of the MENELAS semantic lexicon.
This was mainly performed manually, since we worked
on simple lemmas rather than multi-word terms, and
because only part of the SNOMED terms were available
to us in French: the Microglossary for Pathology (ap-
prox. 12500 terms). We then projected these categories
on the lemmas on the CC/KC nodes. Table 2 shows, for
the NP sub-corpus, the number of categorized lemmas
per SNOMED category and the corresponding number
of occurrences according to AlethIPGN and Lexter.

Our hope that a CC would group together lemmas that
belong to a common semantic category was widely
confirmed. We examined the 30 CCs, and found that
20 were homogeneous. Two were inhomogeneous,
but probably due to tagging inconsistencies. One can
wonder, for instance, whether {long/M court/GI (short)
should not be either both G (modifier) or bothM (mor-

phology). Their separate consideration when tagging
the lexicon probably lead to an inconsistency. In total
then, 22 CC out of 30 fulfilled our expectations.

Table 2: Occurrences of SNOMED-tagged lemmas.
Lemmas/Occ., by Lemmas/Occ., by
AlethlP Lexter AlethIP Lexter

1_4.10 . 3680 T 60 2418 2680
F 56 1600 57 1753 P 53 1357 54 1675
M 48 1250 48 1223 L 8 531 8 516
A 19 320 16 299 D 22 271 23 350
C 33 177 41 266 S 2 30 2 22
total 11101485 12059 12464

Three of the remaining 8 contained one outsider, e.g.,
{effort/F douleur/F angor/D}: we categorized angor
(angina) as a diagnosis, whereas the two other lem-
mas were tagged as "functions". The other 5 CCs are
the largest ones. One can observe though that nodes
with the same semantic category cluster together in
connected sub-graphs. For instance, in ccL5-2, one
can find the following clusters (figure 3); moreover,
these sub-graphs often happen to be relatively disjoint
from the rest of the graph:

G (modifiers): {gauche droit anterieur inferieur lat-
eral antero-lateral posteneur apical postero-inferieur
antero-apical} {moyen proximal distale} {important
signfficatif severe minime recent ancien}
T (topography): {cardiaque coronaire coronarien cir-
conflexe arteriel aortique mitral valvulaire}

In summary, the CCs produced by ZELLIG create
lemma clusters which the comparison to the first
SNOMED level shows to be relevant. If we eliminate
the largest CC (which we could not display), the re-
maining 29 CCs revealed 37 homogeneous clusters,
several of which intersect.

EXTENDING EXISTING CLASSES

As mentioned above, categorized lemmas only cover
part of the corpus. Therefore, some lemmas in the CCs
remain untagged. We examined the extent to which
ZELLIG output could help categorize these lemmas on
the basis of'already tagged lemmas. We derive from
the above observation a tagging heuristic: given an un-
tagged lemma in a CC, its semantic category is chosen
by absolute majority of the ones of its neighbors. As
a trivial case, untagged lemmas in a homogeneous CC
get the semantic category of the rest of the CC.

Applying the heuristic to ccL5-2 (figure 3) correctly
assigns category G to /apical /postero-inferieur/distale
/recent (unanimously for the first 3, 2 against 1 for /re-
cent); /arteriel obtains a tie with 1 against 1 (G/gauche
T/coronarien), and therefore does not get tagged. Con-
sidering again the untagged lemmas in all CCs but the
largest, this heuristic tagged 46 and left 10 untagged.
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Figure 3: Grouping lemmas with same SNOMED category in ccL5-2. Categorized lemmas are preceded with a tag.

38/46 taggings were correct, 4 were erroneous, and 4
raise a doubt which requires to go back to the corpus.
The CCs involved to help obtain these taggings contain
87 tagged lemmas.

REFINING THE HIERARCHY

The Subcategorization Process
ZELLIG graphs show various lemma groups, but the
larger clusters must be split and structured. ZELLIG
results can help this subcategorization task too. Let
us consider the example of the relative localization
adjectives. The contrasts of edge density in ccL5-
2 and the existence of cliques bring out three dif-
ferent lemma groups: {anterieur lateral inferieur pos-
terieur apical antero-apical antero-lateral postero-infer-
ieur}, {anteneur gauche droit ventriculaire coronaire
coronarien} and {proximal moyen distal}. These sub-
classes can be labelled and their boundaries delimited:

1. Localization relative to the myocardium: anterieur,
posterieur, apical, lateral... The proximity between
these adjectives is noticeable both in ccL5-2 and
ccAl0-7. The contexts territoire - and topographie

on the edges of the figure 2 show that the node
lemmas are localization adjectives. More specifically,
these adjectives modify nouns that refer to the heart
and its parts (myocarde, endocardique, epicardique) or
to heart phenomena (infarctus, decalage, ischemie, hy-
pokinesie, akinesie...). Although anterieur is a bridge
to the rest of the CC (fig. 3), it belongs to that subclass:
except for generic ones (reseau , sequelle ,i, atteinte
.. most of its contexts are explicitly "cardiac". On
the contrary, limite does not belong to that class: in
ccA 10-7, it is related to this group of lemmas by a sin-
gle link to anterieur and the frequencies of the shared
contexts show that anterieur is much closer to its other
neighbors than to limite.

2. Localization relative to arteries: proximal, moyen et
distal. As proved by their contexts artere , carotide

^, IVA -., branche ., segment..., these adjectives
characterize artery parts or arteries.

3. Multi-purpose relative localization: droit, gauche.
They occur in more varied contexts. They are used to
localize relatively to the heart (oreillette -, ventricule
^, lobectomie -) but also relatively to an artery (artere
eV, carotide , angiographie -). Hence their central po-
sition in ccL5-2, between the heart localization family
and the family of artery nouns (interventriculaire, cir-
conflexe, arteriel, coronarien, coronaire...).

Validation of subcategories
In the SNOMED, each category (P T etc.) is itself
subdivided into subcategories, up to 6 levels down. As
far as we could check, the subcategorization evidenced
by ZELLIG is generally consistentwith it. ccL5-1, e.g.,
evidences three clusters ofprocedures (P), two ofwhich
are also found in ccA10-1, giving the subgroups:

P (procedure): {bilan exploration controle examen
epreuve test coronarographie plan} {traitement
therapeutique} {angioplastie dilatation revascularisa-
tion pontage intervention hospitalisation}

One can recognize there examinations, (medical) treat-
ments, and invasive treatments (plus hospitalisation),
which are found in distinct subcategories (respectively,
P3-P5, P2, and P1) of the SNOMED P category.

Where the SNOMED is less developed, as in the G axis
(modifiers), ZELLIG could even propose new subcate-
gories. For instance, {absence pas} (non-existence)
is included in {existence absence presence aspect
pas recidive} (indicators of mode of existence), which
should logically belong to G. Modifiers are frequent
in medical narratives: among the 20 most frequent
lemmas, 4-5 are modifiers according to AlethIPGN-
Lexter, and modifier clusters are the most numerous.
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DISCUSSION

Organizing the words of a domain in a set of hierarchi-
cal categories can be divided into two parts: specifying
the categories, and assigning words (found in a repre-
sentative corpus) to these categories. But new words
may lead to create new categories. An empirical ap-
proach then consists in going back and forth between
a refinement of the current categorization and the as-
signment of corpus words to these categories.

This experiment shows that the linguistic analysis per-
formed by ZELLIG evidences relevant classes and sub-
classes oflemmas. The graphs of shared contexts yield
a first map of the domain. They cluster lemmas be-
longing to the same category. Together with the exam-
ination of graph edges, they help subcategorize some
categories, and provide a valuable tool for textual ex-
ploration and analysis, akin to a synthetic concordance.

The approach works well for the most frequent words
of the corpus: for instance, 19 of the 20 most frequent
topography words are found in CCs. Working on a
larger corpus might help categorize a greater number
of lemmas. However, the required corpus size is much
smaller than those (e.g., 842 megabytes3) used by other
approaches:3'9 it is therefore less costly and easier to
gather the necessary data, to analyze it and to interpret
the clusters. Besides, the most frequent words are the
most important ones to capture in a given specialty:
5-threshold CCs include 7 % ofNP lemmas, but cover
37 % ofthe total surface ofcorpus NPs (table 1). A pos-
sible approach to categorize an even larger proportion
of a corpus would be to inject identified categories into
ZELLIG's process for finding second-order affinities.
Basili et al.12 show that such a technique drastically
reduces frequency requirements.

Let us finally stress that the mere examination of clus-
ters and contexts is not sufficient to determine the set
of categories or their limits. On the contrary, one needs
to call on domain knowledge (such knowledge can be
provided by a domain expert or by an existing cate-
gorization). The incompleteness of the method is one
reason. Another, more fundamental one, is that med-
ical narratives leave implicit information that belongs
to the body of knowledge shared by their authors and
readers. An automated method such as that presented
here therefore needs to include an interpretation step.

Acknowledgments

We thank Dr. RA C8te for graciously providing
us a copy of the French version of the SNOMED
Microglossary for Pathology. Serge Heiden (ELI)
wrote the GraphX interactive graph handling tool,
which we used to display and layout the graphs
(ftp: //mycroft.ens-fcl. fr/pub/graphx/).

References
1. Cimino JJ. Coding systems in health care. In: van

Bemmel JH and McCray AT, eds, Yearbook ofMed-
ical Informatics '95 -The Computer-basedPatient
Record. Schattauer, Stuttgart, 1996:71-85.

2. Chute CG, Cohn SP, Campbell KE, Oliver DE,
and Campbell JR. The content coverage of clin-
ical classifications. J Am Med Informatics Assoc
1996;3(3):224-33.

3. Hersh WR, Campbell EH, Evans DA, and Brown-
low ND. Empirical, automated vocabulary discov-
ery using large text corpora and advanced natural
language processing tools. In: Cimino JJ, ed, Proc
AMIA Annual Fall Symposium, Washington DC.
AMIA, 1996:159-63. JAMIA supplement.

4. Habert B, Naulleau E, and Nazarenko A. Symbolic
word clustering for medium-size corpora. In: Proc.
16th COLING, Copenhagen. 1996:490-5.

5. Harris Z, Gottfried M, Ryckman T, et al. The Form
ofInformation in Science, Analysis ofImmunology
Sublanguage. Kluwer Academic Publisher, Dor-
drecht, The Netherlands, 1989.

6. Zweigenbaum P and Consortium MENELAS
MENELAS: an access system for medical records
using natural language. Computer Methods and
Programs in Biomedicine 1994;45:117-20.

7. Miller GA, Beckwith R, Fellbaum C, Gross D, and
Miller KJ. Introduction to WordNet: An on-line
lexical database. Int J Lexicography 1990;3(4).

8. Sussna M. Word sense disambiguation for free-
text indexing using a massive semantic network.
In: Bhargava B, Finin T, and Yesha Y, eds, Proc
Second Int Conf on Information and Knowledge
Management. ACM, 1993:67-74.

9. Hindle D. Noun classification from predicate-
argument structures. In: Proc 28 th ACL,
1990:268-75.

10. Grefenstette G. Corpus-derived first, second and
third-order word affinities. In: EURALEX, Ams-
terdam. August 1994.

11. Bensch PA and Savitch WJ. An occurrence-based
model of word categorization. Annals Math and
ArtifIntell 1995;14:1-6.

12. Basili R, Pazienza MT, and Velardi P. Integrating
general-purpose and corpus-based verb classifica-
tion. Comput Ling 1996;22(4):559-68.

13. C6te RA, Rothwell DJ, Palotay JL, Beckett RS,
and Brochu L, eds. The Systematised Nomencla-
ture ofHuman and Veterinary Medicine: SNOMED
International. College of American Pathologists,
Northfield, 1993.

14. Bourigault D. An endogeneous corpus-based
method for structural noun phrase disambiguation.
In: Proc 6 th EACL, Utrecht. 1993:81-6.

589


